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ABSTRACT. Consider the number of representations of a number as a sum of 2, 4, 6 or 8 squares.
Jacobi proved formulas expressing the number of such representations as a sum of squares in terms
of sums over divisors. This paper reviews these results and the derivations in the case of sums of
2 and 4 squares using the theory of theta functions and modular functions, where changes in sign
and permutations of the squares count as distinct representations. Presented is an introduction to
modular functions, leading to the result that all bounded modular functions are constant; which
is used to prove that the appropriate even powers of theta functions are their so-called Lambert
series. By writing the nth power of the theta function as the generating function corresponding to
the sequence given by number of representations of a nonnegative integer as a sum of n squares,
the formulas arise by comparing coefficients. The formula for representations as a sum of 4 squares
yields Lagrange’s four squares theorem as a consequence, that is, every nonnegative integer is a sum
of 4 squares.

1 Introduction

Consider the problem of whether a given positive integer can be expressed as the sum of N squares, and if so, in
what number of ways, for some positive integer N . If N = 4, for example, the integer 60 can be expressed as a sum
of 4 squares as

60 = 12 + 12 + 32 + 72 = 12 + 32 + 52 + 52 = 22 + 22 + 42 + 62,

and we can check that these three expansions are the only ways to represent 60 as a sum of four squares, up to
permuting the squares or changing the signs (from x2 to (−x)2). If we do count two representations of a number
as a sum of four squares which can be obtained from each other by permuting the squares or changing the signs as
described above, then each of the three representations of 60 actually correspond to 24 · 12 = 192 representations,
giving a total of 576 ways to represent 60 as a sum of four squares. It turns out that we can count the number of
representations of a positive integer as a sum of four squares, in the sense that we can determine the size of the set
{(a, b, c, d) ∈ Z4 | a2 + b2 + c2 + d2 = n}, by the use of theta functions.

We denote the number of representations of a positive integer n as a sum of k squares as (see [2, 3])

rk(n) =
∣∣∣{(a1, a2, . . . , ak) ∈ Zk | a21 + a22 + . . .+ a2k = n}

∣∣∣ .
In our example above, we computed that r4(60) = 576. To compute the coefficients rk(n), we will consider the
associated generating function in n, and relate this to the Jacobi theta function, given by

θ(τ) =
∑
a∈Z

eπiτa
2

. (1)

In particular, we can expand the function θ(τ)k as (this is worked out in the case n = 2 in [3])

θ(τ)k =
(∑
a∈Z

eπiτa
2
)k

=
∑

a1,a2,...,ak∈Z

eπiτ(a
2
1+a

2
2+...+a

2
k) =

∞∑
n=0

rk(n)eπiτn, (2)

so that this is the generating function for the coefficients {rk(n)} in the variable eπiτ . In the last equality we rewrote
the sum over the ai’s as a sum over n = a21 + a22 + . . .+ a2k and over {(a1, a2, . . . , ak) ∈ Zk | a21 + a22 + . . .+ a2k = n};
we may perform this change of summation since the defining sum for the theta function is absolutely convergent if
τ ∈ H, that is, Im τ > 0.

Using the generating function expression, we will show, following [3], that the following formulae hold for r2(n)
and r4(n).
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Theorem 1. (Jacobi) [3] Let n be any positive integer, then

r2(n) =
∑

d|n,d≡1(mod 4)

4 −
∑

d|n,d≡3(mod 4)

4

and
r4(n) =

∑
d|n,4-d

8d.

The methods can be expanded (see Chapter 9 of [2] and a problem in Chapter 10 of [3]) to prove the similar
formulae for k = 6 and 8 below.

Theorem 2. (Jacobi) [2, 3] Let n be any positive integer, then

r6(n) =
∑

d|n,d≡1(mod 4)

4

(
4d2 −

n2

d2

)
−

∑
d|n,d≡3(mod 4)

4

(
4d2 −

n2

d2

)
and

r8(n) =
∑
d|n

16(−1)n+dd3.

We will prove the first two formulas in Section 5. The method we will use (following [2, 3]) is to consider the
generating functions associated to both sides of the equations in Theorems 1 and 2, and show that these generating
functions are equal by proving that they have the same limiting behavior for complex numbers eiπτ with large
magnitude, and using the maximum modulus principle.

2 Modular Functions

We now will consider a class of functions with given transformation properties (entire modular functions) and prove
that all such functions are constant. The aim is to construct a series expansion for the kth power of the theta function
θ(τ)k, and show that this series expansion is equal to θ(τ)k by showing that the ratio of these is an entire modular
function. Before we define these functions, we will consider the properties of what is known as the modular group
acting on the upper half plane H. Define the modular group Γ (see [2, 3]) to be the group of automorphisms of the
upper half plane H, generated by φ(τ) = τ + 1 and ψ(τ) = −1/τ . We can see that by repeated composition of the
functions φ, φ−1 and ψ, the modular group consists of all linear fractional transformations f(τ) = aτ+b

cτ+d
which have

integer coefficients a, b, c and d, and with determinant ad − bc = 1. Indeed, by applying the Euclidean algorithm to
aτ + b and cτ + d, we obtain a sequence of automorphisms φr and ψ whose composition is aτ+b

cτ+d
. We can show that

every linear fractional transformation f(τ) = aτ+b
cτ+d

with determinant 1 is in the modular group Γ by induction on
|c|. The base case, c = 0, follows from the fact that ad = 1 and hence without loss of generality a = d = 1, so that
aτ+b
cτ+d

= φb(τ). For |c| > 0, we may assume without loss of generality that c > 0, and by translation by an integer
it suffices to prove this for 0 ≤ a ≤ c − 1. Note that the composition of two linear fractional transformations with
determinant 1 also has determinant 1, and φ and ψ have determinant 1. Then, by the inductive hypothesis, −1/f(τ)
has denominator aτ + b with a ≤ c − 1, is contained in 〈φ, ψ〉, and has determinant 1, hence f ∈ 〈φ, ψ〉 as desired.
For example, the Euclidean algorithm procedure enables us to compute that

4τ + 9

3τ + 7
= φ

( τ + 2

3τ + 7

)
= (φ ◦ ψ)

(
− 3τ + 7

τ + 2

)
= (φ ◦ ψ ◦ φ−3)

(
− 1

τ + 2

)
= (φ ◦ ψ ◦ φ−3 ◦ ψ ◦ φ2)(τ),

where after the first two steps, we reduced the magnitude of the coefficient of τ in the denominator. Finally, consider
the relation

Im
aτ + b

cτ + d
=

Im((aτ + b)(cτ + d))

|cτ + d|2
=

(ad− bc) Im τ

|cτ + d|2
=

Im τ

|cτ + d|2
, (3)

which holds since ad−bc = 1. We see that all linear fractional transformations with positive determinant are automor-
phisms of the upper half plane H. Thus, the modular group Γ acts on H by special linear fractional transformations.

The fundamental domain F is defined as the set of all complex numbers τ ∈ H with −1/2 ≤ Re τ ≤ 1/2 and
|τ | ≥ 1; we claim that every orbit in H with respect to the action by Γ intersects F (the proof presented is from
[1, 3]). Consider the orbit of a given τ ∈ H under the action of the modular group Γ. We first show that the
set {rτ + s | (r, s) ∈ Z2} attains its minimum. If |rτ + s| ≤ |τ |, we must have Im(rτ + s) = r Im τ ≤ |τ |, and
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−|τ | ≤ s ≤|τ | + |τ |Re τ
Im τ

, so that there are finitely many possible pairs (r, s) with this property. Since the number of
such pairs is nonzero (as (r, s) = (1, 0) satisfies |rτ + s| ≤|τ |), we may choose (r, s) such that |rτ + s| is minimal.

If f(τ) = aτ+b
rτ+s

is in Γ, using equation (3), we have that Im f(τ) is maximal in the set of all Im τ ′, for τ ′ in the

orbit of τ . In particular, if τ ′ = −1/f(τ), by equation (3),

Im f(τ) ≥ − Im
1

f(τ)
=

Im f(τ)

|rτ + s|2
,

and
∣∣f(τ)

∣∣ ≥ 1. However, we still must show that such an f exists. Note that gcd(r, s) = 1, otherwise Im( r
gcd(r,s)

τ +
s

gcd(r,s)
) < Im(rτ+s). If r = 0, then f is a translation; and if r = 1, we can define f(τ) = τ+(s−1)

rτ+s
. Otherwise r 6= 0, 1,

and we may define 0 ≤ a ≤ r − 1 such that a ≡ s−1 (mod r), and choose b ∈ Z such that as = br + 1, the linear
fractional transformation f0(τ) = aτ+b

rτ+s
then has determinant 1. Choose some integer k such that

∣∣Re f0(τ) + k
∣∣ ≤ 1/2.

Then f(τ) := (φk ◦ f0)(τ) has
∣∣Re f(τ)

∣∣ < 1/2 and by the earlier analysis,
∣∣f(τ)

∣∣ ≥ 1, so that f(τ) ∈ F is in the
fundamental domain. Thus the orbit of τ with respect to the group action by Γ on H intersects the fundamental
domain F at the point f(τ). The results obtained thus far about the modular group are summarized in the following
lemma.

Lemma 3. [1, 3] The modular group Γ of linear fractional transformations f(τ) = aτ+b
cτ+d

acting on the upper half-plane
H is generated by the translation φ(τ) = τ+1 and the automorphism ψ(τ) = −1/τ , and every orbit in H corresponding
to the action by Γ has a nonempty intersection with the fundamental domain F := {τ ∈ C | |Re τ | ≤ 1/2, |τ | ≥ 1}.

Let G ≤ Γ be a finite-index subgroup of the modular group. Define (as in [2], Chapter 11) a modular function for G
as a meromorphic function h : H→ C in the variable τ with the transformation property h(g(τ)) = h(τ) for all g ∈ G.
We follow [2] in defining an entire modular function. Since G has finite index, we may choose a union FG of finitely
many sets of the form f(F) where f is a linear fractional transformation of determinant 1, such that every orbit in H
with respect to the action by G has nonempty intersection with FG. In particular, we may consider representatives
α1, α2, . . . , αn ∈ Γ such that Γ is the disjoint union of the right cosets Gαi for 1 ≤ i ≤ n. Then every orbit in H
with respect to the action by G has a nonempty intersection with the union FG := α1(F) ∪ α2(F) ∪ . . . ∪ αn(F), by
Lemma 3. Note that the closure of the fundamental domain F ⊆ S2 in the Riemann sphere also includes the point
∞. By applying the automorphism αi of S2, we see that the closure of αi(F) is the union of αi(F) with αi(∞). Again
applying the fact that G has finite index, the intersection G ∩ 〈φ〉 must be nontrivial, and there exists some n such
that φn ∈ G. For the point ∞, we may define a function g∞ on the punctured unit disk by g∞(q∞) = f(τ), where
q∞ = e2πiτ/n. For a point α ∈ Q, we may choose some χα ∈ Γ such that χα(α) = ∞. Since G has finite index,
G ∩ 〈χαφχ−1

α 〉 must be nontrivial (as 〈χαφχ−1
α 〉 is infinite), and there exists some nα such that χαφ

nαχ−1
α ∈ G. We

may define the function gα, again on the punctured unit disk, such that gα(qα) = f(τ), where qα := e2πiχα(τ)/m. For
the purpose of simplifying expressions, we will define gi := gαi(∞) and qi := qαi(∞).

We say, as in [2], that h is an entire modular function if gi can be analytically continued to a holomorphic function
in the open unit disk for all 1 ≤ i ≤ n. We then obtain the following result (stated in [2], and proved in a particular
case in Chapter 10 of [3]).

Lemma 4. [2, 3] Let G ≤ Γ be a subgroup of finite index. Then the only entire modular functions on H with respect
to G are the constant functions. Further, every bounded modular function on H with respect to G is constant.

Proof. We follow the method of proof in [3]. We will be using the maximum modulus principle, which states that
a holomorphic function on an open set will not attain its maximum, because it is an open mapping. Let h be an
entire modular function on H with respect to G. In the notation of the preceding discussion, since h is entire, the
function h can be analytically continued to a holomorphic function on the closure of FG in the Riemann sphere S2.
Since this closure is compact, by the extreme value theorem, h attains its maximum at some point in this closure.
By the maximum modulus principle, h does not attain its maximum on H, hence the maximum must be attained at
one of the cusps αi(∞). But, we may apply the maximum modulus principle to gi on the open unit disk to see that
gi does not attain its maximum at qi = 0, a contradiction. By Riemann’s theorem on removable singularities (see [3],
Chapter 3), any bounded modular function is entire, so all bounded modular functions are thus constant.

For the purposes of theta functions, due to the fact ([3], Chapter 10) that

θ(τ) = θ(φ2(τ)) and θ2(τ) =
i

τ
θ2(ψ(τ)), (4)
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which will be derived in Section 3, we will consider the subgroup G = 〈φ2, ψ〉 of Γ. To show that all entire modular
functions on G are constant, we are left to show that G has finite index in Γ. To this end, the following statement
holds.

Lemma 5. The subgroup G := 〈φ2, ψ〉 ≤ Γ has index 3 in Γ, and in particular, Γ = G ∪Gφ ∪Gφψ.

Proof. We will be using congruence subgroups of SL2(Z), which are considered in [1]. First, we may verify that
Γ ∼= SL2(Z)/{±1} under the identification(

f(τ) =
aτ + b

cτ + d

)
∈ Γ←→

(
a b
c d

)
∈ SL2(Z)/{±1}.

Define the congruence subgroup Γ̃ ≤ Γ to be the group consisting of all matrices M ∈ SL2(Z)/{±1} with either

M ≡ I or

(
0 1
1 0

)
(mod 2),

and define (as in [1], Chapter 3) the principal congruence subgroup Γ(2) of level 2 as the group of all matrices
M ∈ SL2(Z)/{±1} with M ≡ I (mod 2). We will use the Euclidean algorithm approach from earlier in the section

to show that every element of Γ̃ corresponds to an element of G. Let

M =

(
a b
c d

)
∈ Γ̃,

and f(τ) be the associated linear fractional transformation; we show that M ∈ G by induction on c, where we may
multiply M by an element of {±1} such that c ≥ 0. Note that the given condition can be rephrased as a ≡ d (mod 2)
and b ≡ c (mod 2). If c = 0, ad = 1, and by multiplying by an element of {±1}, we see that M is a translation in
〈φ2〉, as b is even. Suppose that c > 0. As gcd(a, c) = 1, there exists some integer k such that |a+ 2ck| ≤ c − 1.

Then (ψ ◦ φ2k ◦ f)(τ) = − cτ+d
(a+2ck)τ+(b+2dk)

is a linear fractional transformation corresponding to a matrix in Γ̃, with

|a+ 2ck| < c, so by the inductive hypothesis, ψ ◦ φ2k ◦ f ∈ G and f ∈ G as well. To compute the index of G in
SL2(Z)/{±1}, it suffices to compute the index of 〈ψ〉 = 〈φ2, ψ〉 in SL2(Z/2Z) = [SL2(Z)/{±1}]/Γ(2) (as φ2 ∼= I
(mod 2)). Note that

∣∣SL2(Z/2Z)
∣∣ = 6, and

∣∣〈ψ〉∣∣ =
∣∣{1, ψ}∣∣ = 2, hence G has index 3 in Γ. We can verify that G, Gφ,

and Gφψ correspond to disjoint cosets in SL2(Z/2Z), proving the lemma.

3 Properties of the theta function

We will first consider the properties of the Jacobi theta function with respect to modular transformations, that is,
with respect to elements of the modular group. Throughout this section, we will use the notation G = 〈φ2, ψ〉 ≤ Γ.
The identity θ(φ2(τ)) = θ(τ + 2) = θ(τ) follows immediately from the expression (1). To prove the other identity
in equation (4), we use the Poisson summation formula to deduce the following lemma. Note that in all uses of the
Poisson summation formula in this section and in the next, the relevant function has exponential decay at infinity.

Lemma 6. [2, 3] For any τ ∈ H, we have the relation

e−
πi
4
√
τ
∑
n∈Z

eπiτn
2

=
∑
n∈Z

e−
πin2

τ ,

where
√
τ is defined using the normal branch cut along the negative real line.

Proof. Following [3], we will apply the Poisson summation formula to the entire function g(z) := eπiτz
2

. In particular,∑
n∈Z

eπiτn
2

=
∑
n∈Z

g(n) =
∑
n∈Z

∫ ∞
−∞

g(x)e−2πinxdx =
∑
n∈Z

∫ ∞
−∞

eπiτx
2−2πinxdx

=
∑
n∈Z

e−
πin2

τ

∫ ∞
−∞

eπiτ(x−
n
τ
)2dx =

∑
n∈Z

e−
πin2

τ

∫ ∞
−∞

eπiτx
2

dx.
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Let τ = |τ |eiω. By considering the function e−z
2

and integrating it on the contour which is a sector of radius R
centered at 0 from the point R to Rei(−

π
4
+ω

2
), we obtain∫ R

√
π|τ |

0

eπiτx
2

dx =

√
1

π|τ |e
i(π

4
−ω

2
)

∫ R

0

ex
2

dx

and hence, by setting R→∞ and plugging this into the previous equation,∑
n∈Z

eπiτn
2

=
1√
|τ |
ei(

π
4
−ω

2
)
∑
n∈Z

e−
πin2

τ = τ−
1
2 e

πi
4

∑
n∈Z

e−
πin2

τ

as desired.

The transformation of θ(τ) under ψ given in equation (4) follows as a consequence of this identity. Since Γ =
G∪Gφ∪Gφψ by Lemma 5, we see that every orbit of H with respect to the action by G has a nonempty intersection
with F∪φ(F)∪ (φ◦ψ)(F). To show that a function of the form S(τ)/θ(τ) is a bounded modular function with respect
to G, we must show that it is invariant under the action of G, θ(τ) is nonzero everywhere, and S(τ)/θ(τ) is bounded
near the points on the boundary. The point at infinity is mapped to itself by φ and is mapped to 1 by φ ◦ ψ, so we
must show that S(τ)/θ(τ) is bounded near 1 and ∞.

We will now consider estimates for θ(τ) as τ → 1 and τ → ∞, the corresponding estimates for the series S(τ)
will be considered in the next section. If τ →∞, then q := eπiτ → 0, and every term in the theta function series (1)
tends to zero except the n = 0 term, so that θ(τ)→ 1. The following lemma (from [3]) addresses the case τ → 1.

Lemma 7. [3] As Im τ →∞, we have the relation

θ

(
τ − 1

τ

)
= 2
√
τe

πi(τ−1)
4 +O(|τ |

1
2 e

9πiτ
4 ),

where as in Lemma 6,
√
τ is defined using the standard branch cut of the complex plane, that is, along the negative

real axis.

Proof. Set τ̃ = −1/τ . Then by the Poisson summation formula,

θ(τ̃ + 1) =
∑
n∈Z

eπi(τ̃+1)n2

=
∑
n∈Z

eπineπiτ̃n
2

=
∑
n∈Z

∫ ∞
−∞

eπix+πiτ̃x
2

e−2πinxdx

=
∑
n∈Z

∫ ∞
−∞

eπiτ̃x
2−2πi(n− 1

2
)xdx.

Following the proof of Lemma 6, where we replace n by n− 1
2
, we obtain

θ(τ̃ + 1) = τ̃−
1
2 e

πi
4

∑
n∈Z

e−
πi(n− 1

2
)2

τ̃ = −
√
τe

πi
4

∑
n∈Z

eπiτ(n−
1
2 )2 = −2

√
τe

πi
4

∞∑
n=1

(
e
πiτ
4
)(2n−1)2

.

As Im τ →∞, e
πi
4 → 0, and we can use the leading term as an estimate. Since∣∣∣∣ ∞∑

n=2

(
e
πiτ
4
)(2n−1)2

∣∣∣∣ ≤ e 9πi
4

∞∑
n=0

|eπiτ |4n = e
9πi
4 (1− |eπiτ |4)−1 = O(e

9πi
4 ),

we obtain the desired estimate for θ(τ).

We will outline the proof that the theta function θ(τ) is nonzero everywhere on H, by writing the theta function
in a product form where this follows directly.

Theorem 8. [3] The relation

θ(τ) =

∞∏
n=1

(1− e2πiτn)
(

1 + eπiτ(2n−1)
)2

holds for all τ ∈ H. In particular, θ(τ) is nonzero.
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Proof. This proof is from [3]. To prove this theorem we introduce two functions which are generalizations of the left
and right-hand-sides of the desired relation. These are the general form of the theta function

Θ(w|τ) :=
∑
n∈Z

eπiτn
2+2πinw,

and following the notation in [3], the function

Π(w|τ) :=

∞∏
n=1

(1− q2n)(1 + q2n−1e2πiw)(1 + q2n−1e−2πiw),

where q := eπiτ . We will be analyzing the properties of these functions as entire functions in the variable w ∈ C.
First, we define, following [3], c(w|τ) = Θ(w|τ)/Π(w|τ). This is an entire function since the only zeros of Π(w|τ) are
the simple zeros at w such that 2w = (2n− 1)τ + (2m− 1) for some m,n ∈ Z, and Θ(w|τ) has zeros at these values
of w as well. Under the transformation w → w + τ , the theta function and the product become

Θ(w + τ |τ) =
∑
n∈Z

eπiτn
2+2πin(w+τ) = e−πiτ−2πiw

∑
n∈Z

eπiτ(n+1)2+2πi(n+1)w = e−πiτ−2πiwΘ(w|τ)

and

Π(w + τ |τ) =

∞∏
n=1

(1− q2n)(1 + q2n−1e2πi(w+τ))(1 + q2n−1e−2πi(w+τ))

=

∞∏
n=1

(1− q2n)(1 + q2n+1e2πiw)(1 + q2n−3e−2πiw)

=

∞∏
n=1

1− q2n
∞∏
n=2

1 + q2n−1e2πiw
∞∏
n=0

1 + q2n−1e−2πiw

=
1 + q−1e−2πiw

1 + qe2πiw

∞∏
n=1

(1− q2n)(1 + q2n−1e2πiw)(1 + q2n−1e−2πiw)

= q−1e−2πiwΘ(w|τ) = e−πiτ−2πiwΠ(w|τ),

so that c(w + τ |τ) = c(w|τ). From the definition of the theta and product functions, c(w + 1|τ) = c(w|τ). Thus, as
c(w|τ) is bounded on the parallelogram with vertices 0, 1, τ , and τ+1, and we may translate any point in C by mτ+n
for some m,n ∈ Z to the parallelogram, we see that c(w|τ) is a bounded entire function. Thus by Liouville’s Theorem,
c(w|τ) does not depend on w. (The preceding analysis, that any entire function f(w) with f(w) = f(w+1) = f(w+τ)
is from [3], Chapter 9.) Now we show that c(w|τ) is independent of τ . Since q → 0 as Im τ →∞, we see that in this
limit Θ(w|τ) → 1 and Π(w|τ) → 1, so that c(w|τ) = 1 for all τ , which proves the theorem. To do this, it suffices
to show the relation c(w|τ) = c(w|4τ), so that c(wτ) = limk→∞ c(w|4kτ) = 1, as in the limit k → ∞, q → 0. This
follows from computing c(1/4|τ) and c(1/2|τ), the details can be found in [3].

4 Lambert Series

In this section we compute the Lambert series expansions for θ2k(τ) for k = 1, 2, 3 and 4. These expansions are
derived in [2] by the manipulation of sums, however, we will follow the method in [3], Chapter 10 and prove these
using Lemmas 4 and 5, and the Poisson summation formula. In the two cases, k = 1 and k = 2, proven here we will
follow the method in [3] (the proof of the Lambert series for θ2(τ) is given there), by showing that the ratio of the
series expansion and the corresponding power of the theta function is a bounded modular function in H with respect
to the group G, which is constant by Lemma 4, since G has finite index in Γ by Lemma 5. We first determine the
transformation properties of the series under ψ. We then have the following theorem, where the formulas are from
[2, 3] and (6) has been modified from that in [2].
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Theorem 9. [2, 3] Let τ ∈ H, and let q := eπiτ . Consider the series

S2(τ) = 1 + 4

∞∑
n=1

qn

1 + q2n
, (5)

S4(τ) = 1 + 8

∞∑
n=1

(
nqn

1− q2n +
q2n

(1 + q2n)2

)
, (6)

S6(τ) = 1 + 4

∞∑
n=1

(
(2n− 1)2(−1)nq2n−1

1− q2n−1
+

4n2qn

1 + q2n

)
, (7)

S8(τ) = 1 + 16

∞∑
n=1

n3(qn + (−1)nq2n)

1− q2n . (8)

These satisfy the relation S2k(τ) = ( i
τ

)kS2k(− 1
τ

) for all τ ∈ H.

Proof. The relation is proved here for S2(τ) and S4(τ) using the method in [3]; proofs of the relations θ2k(τ) = S2k(τ)
for k = 3 and 4 can be found in [2]. For the first series, we use the Poisson summation formula to rewrite

S2(τ) = 1 + 4

∞∑
n=1

qn

1 + q2n
= 2

∑
n∈Z

qn

1 + q2n
= 2

∑
n∈Z

∫ ∞
−∞

eπiτx−2πinx

1 + e2πiτx
dx.

As in [3], we use the rectangular contour with height − Im (1/τ) and width R, with R → ∞, to evaluate the
integral. The integrand has a pole at x = −1/2τ in this region, and the integrals over the vertical lines ±R + ai for
0 ≤ a ≤ − Im (1/τ) tend to 0 as R→∞. The remaining contour integral is then∫ −i Im 1

τ
+∞

−i Im 1
τ
−∞

eπiτy−2πiny

1 + e2πiτy
dy = −e

2πin
τ

∫ ∞
−∞

eπiτx−2πinx

1 + e2πiτx
dx,

by making the substitution x = y + 1/τ . Since

Res

(
eπiτx−2πinx

1 + e2πiτx
;− 1

2τ

)
= −ie

πin
τ lim

x→− 1
2τ

x+ 1
2τ

1 + e2πiτx
=

1

2πτ
e
πin
τ ,

we obtain ∫ ∞
−∞

eπiτx−2πinx

1 + e2πiτx
dx =

i

τ

e
πin
τ

1 + e
2πin
τ

, (9)

and we may evaluate the first series as

S2(τ) = 1 + 4

∞∑
n=1

qn

1 + q2n
=

2i

τ

∑
n∈Z

e
πin
τ

1 + e
2πin
τ

=
i

τ

1 + 4

∞∑
n=1

e−
πin
τ

1 + e−
2πin
τ

 =
i

τ
S2(− 1

τ
).

For the second series, we define the function

fτ (x) =
xeπiτx

1− e2πiτx +
e2πiτx

(1 + e2πiτx)2
(10)

away from x = 0, and at x = 0 we set

fτ (0) := lim
x→0

(
xeπiτx

1− e2πiτx +
e2πiτx

(1 + e2πiτx)2

)
= − 1

2πiτ
+

1

4
.

Then fτ (x) is a meromorphic function on the complex plane. We apply the Poisson summation formula to find that

S4(τ) = 1 + 8

∞∑
n=1

(
nqn

1− q2n +
q2n

(1 + q2n)2

)
= 4

∑
n∈Z

fτ (n) +
2

πiτ
= 4

∑
n∈Z

∫ ∞
−∞

fτ (x)e−2πinxdx+
2

πiτ

= 4
∑
n∈Z

∫ ∞
−∞

(
xeπiτx

1− e2πiτx +
e2πiτx

(1 + e2πiτx)2

)
e−2πinxdx+

2

πiτ
.
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To evaluate the second integral, we use a rectangular contour as before, with height − Im (1/τ) and width R with
R → ∞. Note that the only pole surrounded by the contour is x = −1/2τ , which in this case is actually a double
pole. The residue is

Res

(
e2πi(τ−n)x

(1 + e2πiτx)2
;− 1

2τ

)
= lim
x→− 1

2τ

d

dx

( x+ 1
2τ

1 + e2πiτx

)2

e2πi(τ−n)x


=

1

2πiτ
e
πin
τ − 2πi(τ − n)

(2πiτ)2
e
πin
τ =

n

2πiτ2
e
πin
τ .

As before, the integrals over the vertical lines ±R + ai for 0 ≤ a ≤ − Im (1/τ) tend to 0 as R → ∞. By evaluating
the integral on the contour from − Im (1/τ)− iR to − Im (1/τ) + iR, and comparing with the real integral, we obtain∫ ∞

−∞

e2πiτx

(1 + e2πiτx)2
e−2πinxdx =

1

τ2
ne

πin
τ

1− e 2πin
τ

= − 1

τ2
ne−

πin
τ

1− e− 2πin
τ

. (11)

For the first integral, we choose the rectangular contour through the points −R, R, −R+ Im 2N+1
2τ

, and R+ Im 2N+1
2τ

with R,N → ∞. The integrand has poles in the contour at k/τ for k an integer with 1 ≤ k ≤ N , and we again
can ignore the integrals over the vertical lines ±R + ai for Im 2N+1

2τ
≤ a ≤ 0 as R → ∞. The integral over the top

segment becomes∫ i Im 2N+1
2τ

+∞

i Im 2N+1
2τ
−∞

yeπiτy−2πiny

1− e2πiτy dy =

∫ ∞
−∞
−ie−

πin(2N+1)
τ

(
x− 2N + 1

2τ

)
eπiτx−2πinx

1 + e2πiτx
dx.

Since Im (1/τ) < 0, this integral tends to zero as N →∞. The residues at the poles are

Res

(
xeπiτx−2πinx

1− e2πiτx ;
k

τ

)
=
k(−1)k+1e−

2πink
τ

2πiτ2
.

Thus, ∫ ∞
−∞

xeπiτx−2πinx

1− e2πiτx dx =
1

τ2

∞∑
k=1

k
(
−e−

2πin
τ

)k
= − 1

τ2
e−

2πin
τ(

1 + e−
2πin
τ

)2 . (12)

Combining these, we obtain the desired transformation property

S4(τ) = − 1

τ2

1 + 8

∞∑
n=1

(
ne−

πin
τ

1− e− 2πin
τ

+
e−

2πin
τ(

1 + e−
2πin
τ

)2
)

+
2

πi(− 1
τ

)

 = − 1

τ2
S4(− 1

τ
),

as desired.

We next determine the behavior of the series S2k(τ) for τ → 1. We will compare this to the estimate for θ2k(τ)
as τ → 1, to show that the ratio S2k(τ)/θ2k(τ) is bounded in this region. We have the following theorem, in this
regard. This theorem is stated and proved in [3] in the case k = 1.

Theorem 10. [3] The series S2k(τ) of Theorem 9 for k = 1, 2 satisfies

S2k

(
τ − 1

τ

)
= (−4iτ)ke

πiτk
2 +O

(
|τ | e

πi(k+2) Im τ
2

)
as Im τ →∞.

Proof. We follow the proof in [3]. If τ̃ := −1/τ , and q̃ := eπiτ̃ , we have by the Poisson summation formula,

S2(τ̃ + 1) = 2
∑
n∈Z

eπinq̃n

1 + q̃2n
= 2

∑
n∈Z

∫ ∞
−∞

eπix+πiτ̃x−2πinx

1 + e2πiτ̃x
dx = 2

∑
n∈Z

∫ ∞
−∞

eπiτ̃x−2πi(n− 1
2
)x

1 + e2πiτ̃x
dx.

By equation (9), we may evaluate the integral to obtain

S2

(
τ − 1

τ

)
= S2(τ̃ + 1) =

2i

τ̃

∑
n∈Z

e−
πi(n− 1

2 )
τ̃

1 + e−
2πi(n− 1

2 )
τ̃

= −2iτ
∑
n∈Z

w2n−1

1 + w4n−2
= −4iτ

∞∑
n=1

w2n−1

1 + w4n−2
,
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where w := e
πiτ
2 . As Im τ →∞, w → 0, and we see that∣∣∣∣∣∣

∞∑
n=2

w2n−1

1 + w4n−2

∣∣∣∣∣∣ ≤ |w|3

1−|w|

∞∑
n=0

|w|2n ≤ |w|3

(1−|w|)(1−|w|2)
= O(|w|3).

Since the n = 1 term is w
1+w2 = w +O(|w|3), we arrive at the desired estimate

S2

(
τ − 1

τ

)
= −4iτe

πiτ
2 +O(|w|3|τ |).

Likewise, for the series S4(τ), consider the function f̃(x) analogous to the function fτ (x) in (10), defined by

f̃(x) =
xeπix+πiτ̃x

1− e2πiτ̃x +
e2πiτ̃x

(1 + e2πiτ̃x)2

away from x = 0, and defined at x = 0 by the limit

f(0) := lim
x→0

f(x) = lim
x→0

xeπix+πiτ̃x

1− e2πiτ̃x +
e2πiτ̃x

(1 + e2πiτ̃x)2
= − 1

2πiτ
+

1

4
.

The function f̃ is a meromorphic function on the complex plane. By the Poisson summation formula

S4(τ̃ + 1) = 1 + 8

∞∑
n=1

(
neπinq̃n

1− q̃2n +
q̃2n

(1 + q̃2n)2

)
= 4

∑
n∈Z

f̃(n) +
2

πiτ̃

= 4
∑
n∈Z

∫ ∞
−∞

(
xeπix+πiτ̃x

1− e2πiτ̃x +
e2πiτ̃x

(1 + e2πiτ̃x)2

)
e−2πinxdx+

2

πiτ̃

= 4
∑
n∈Z

(∫ ∞
−∞

xeπiτ̃x

1− e2πiτ̃x e
−2πi(n− 1

2 )xdx+

∫ ∞
−∞

e2πiτ̃x

(1 + e2πiτ̃x)2
e−2πinxdx

)
+

2

πiτ̃
.

We can evaluate the integrals using equations (11) and (12) to get

S4

(
τ − 1

τ

)
= S4(τ̃ + 1) = − 4

τ̃2

∑
n∈Z

(
e−

πi(2n−1)
τ̃(

1 + e−
πi(2n−1)

τ̃

)2 +
ne−

πin
τ̃

1− e− 2πin
τ̃

)
+

2

πiτ̃

= −4τ2
[∑
n∈Z

(
eπi(2n−1)τ(

1 + eπi(2n−1)τ
)2 +

neπinτ

1− e2πinτ

)
+

1

2πiτ

]

= −8τ2
∞∑
n=1

(
q2n−1

(1 + q2n−1)2
+

nqn

1− q2n

)
,

where q := eπiτ , and the summand with n = 0 is defined by the limit n→ 0. As Im τ →∞, q → 0, and∣∣∣∣∣∣
∞∑
n=2

(
q2n−1

(1 + q2n−1)2
+

nqn

1− q2n

)∣∣∣∣∣∣ ≤ |q|3(
1−|q|3

)2 ∞∑
n=0

|q|2n +
|q|2

1−|q|4
∞∑
n=0

(n+ 2)|q|n = O(|q|2).

Since the n = 1 term is q
(1+q)2

+ q
1−q2 = 2q +O(q2), we obtain the estimate when k = 2,

S4

(
τ − 1

τ

)
= −16τ2eπiτ +O(|τ |2|q|2),

as desired.

We now combine the theorems in this section and the previous section to find the following result.

Theorem 11. [3] For k = 1, 2, 3 or 4, and for all τ ∈ H, θ2k(τ) = S2k(τ), for S2k the series defined in Theorem 9.
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Proof. We prove this for the cases k = 1 and k = 2, following the method in [3]. As mentioned in the proof of
Theorem 9, proofs of this result for k = 3 and 4 can be found in [2], Chapter 9. Let f(τ) := S2k(τ)/θ2k(τ), this is
a holomorphic function on the upper half plane by Theorem 8 (that the theta function is nonzero). By equation (4)
and Theorem 9, and because θ(τ) and S2k(τ) are invariant under φ2, we see that f(τ) is invariant under the action
of G, and is thus a modular function. Let K ⊆ S2 denote the compact subset of the Riemann sphere S2 formed
by deleting the appropriate open neighborhoods of 1 and ∞ from F ∪ φ(F) ∪ (φ ◦ ψ)(F), where F is the fundamental
domain defined in Section 2. By the extreme value theorem, f is bounded on K, and is bounded on appropriate open
neighborhoods of 1 and ∞ by Lemma 7 and Theorem 10; since {α(∞) | α = 1, φ or φ ◦ ψ} = {1,∞}, f is a bounded
modular function. By Lemma 5, G has finite index in Γ, hence by Lemma 4, f is constant. Since θ(τ) → 1 and
S2k(τ)→ 1 as Im τ →∞, f(τ) = 1, and the desired equality holds.

5 Sums of 2, 4, 6 or 8 Squares

We now derive the formulas in Theorems 1 and 2. We begin with the equality from equation (2) and Theorem 11,

∞∑
n=0

r2k(n)eπiτn = S2k(n). (13)

If k = 1, we expand the formula (5) as the power series in q := eπiτ , following [3],

S2(n) = 1 + 4

∞∑
n=1

qn

1 + q2n
= 1 + 4

∞∑
n=1

∞∑
m=1

(−1)m+1qn(2m−1) = 1 + 4

∞∑
n=1

∑
2d−1|n

(−1)dqn

= 1 +

∞∑
n=1

( ∑
d|n,d≡1(mod 4)

4−
∑

d|n,d≡3(mod 4)

4

)
qn.

Comparing both sides of equation (13), we obtain the first formula in Theorem 1. If k = 2, we perform a similar
expansion for (6) as a power series in q, to get

S4(n) = 1 + 8

∞∑
n=1

(
nqn

1− q2n +
q2n

(1 + q2n)2

)
= 1 + 8

∞∑
n=1

∞∑
m=1

nqn(2m−1) +m(−1)m+1q2mn

= 1 + 8

∞∑
n=1

( ∑
d|n, n/d odd

d+
∑

d|n, n/d even

d(−1)d+1

)
qn.

Let n = a · 2k for a odd, then the coefficient of qn in the power series above is

8

∑
d|a

d · 2k +
∑
d|a

d(1− 2− 4− . . .− 2k−1)

 = 8
∑
d|a

3d = 8
∑
d|2a

d = 8
∑
d|n,4-d

d,

which reproduces the second formula in Theorem 1. The formulas in Theorem 2 can be obtained similarly from
equations (7) and (8), see [2] for a derivation in those cases.
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